6.3 Crystalline structure

Bravais lattices

Vo‘lum'e of V = (axb) ¢ 6.1) ab,c
primitive cell 14
a’ =2nbxc/[(axb)-c] (6.2)
Reciprocal b* =2ncexa/[(axb) - c) (6.3) o
primitive base ¢’ =2naxb/[(axb) c] (6.4) | @be
vectors® aa=bb=cc=2n (6.5)
ab'=ac =0 (etc) (6.6)
Lattice vector R, =ua+vb+we (6.7) | R
u,v,w
Reciprocal lattice ~ G =ha +kb™ +1c* (6.8) | G
vector exp(iGpr - Rypy) =1 (6.9) | i
Weiss zone .
T hu+kv+Iw=0 (6.10) | (nki)
equation
Interplanar 2n At
spacing (general) e G (6.11)
Inteliplanar L o® ok R
spacing o ——2+E+—2 (6.12)
(orthogonal basis) hkl

primitive base vectors
volume of primitive cell

reciprocal primitive base
vectors

lattice vector [uvw]
integers

reciprocal lattice vector [hkl]
i2=—1

Miller indices of plane¢

distance between (hkl)
planes

“Note that this is 2n times the usual definition of a “reciprocal vector” (see page 20).
bCondition for lattice vector [uvw] to be parallel to lattice plane (hkl) in an arbitrary Bravais lattice.
“Miller indices are defined so that Gy is the shortest reciprocal lattice vector normal to the (hkl) planes.

Weber symbols

1

U= §(2u—v) (6.13)
Converting V= 1(20 —u) (6.14)
[uvw] to 3 |
[UyVTwW] T=—3(u-+v) 6.15)

W=w (6.16)
Converting u=U~—T) (6.17)
[UVTW] to v=(V—-T) (6.18)
[uvw] w=W (6.19)
Zone law® hU+kV +iT +1W =0 (6.20)

u,v, T,w
u,0,w
[UVTW]
[uvw]

(hkil)

Weber indices
zone axis indices
Weber symbol
zone axis symbol

Miller—Bravais indices

“For trigonal and hexagonal systems.
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Cubic lattices

lattice primitive (P) body-centred (I) face-centred (F)
lattice parameter a a a
volume of conventional cell a’ a’ a’
lattice points per cell 1 2 4
1st nearest neighbours® 6 8 12
Ist n.n. distance a a/3/2 a/\2
2nd nearest neighbours 12 6 6
2nd n.n. distance a2 a a
packing fraction” n/6 J31/8 J2n/6
reciprocal lattice“ P F I
ay =ax a=5(y+z—X%) ai=5(y+z2)
primitive base vectors? a=ap a=50E+x—y) a=5(Z+X%)
ay=at a3 =5(x+y—12) a3=5(+)

40r “coordination number.”

bFor close-packed spheres. The maximum possible packing fraction for spheres is ﬁn/&

“The lattice parameters for the reciprocal lattices of P, I, and F are 2n/a, 4n/a, and 47 /a respectively.
%, $, and % are unit vectors.

Crystal systems*

system symmetry unit cell’ lattices®
triclinic none Z i Zif/’ L90p P
monoclinic  one diad | [010] Zi[;igo §490° P, C
orthorhombic three orthogonal diads Zi;if/;z 90° P,CIF
tetragonal one tetrad || [001] zi[éi;’: 90° P 1
trigonal? one triad || [111] Z j?j/? 120° £90° P, R
hexagonal one hexad | [001] zi[éi;’oo’ y=120° P

cubic four triads | (111) Z j’;f/;: 00° P FI

9The symbol “#” implies that equality is not required by the symmetry, but neither is it forbidden.

bThe cell axes are a, b, and ¢ with o, f, and y the angles between b :¢, ¢ :a, and a :b respectively.

“The lattice types are primitive (P), body-centred (I), all face-centred (F), side-centred (C), and
rhombohedral primitive (R).

4A primitive hexagonal unit cell, with a triad | [001], is generally preferred over this rhombohedral unit cell.
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Dislocations and cracks

N 1 unit vector | line of
g,dlge i 1-b=0 (6.21) dislocation
1slocation b,b Burgers vector”
N dislocation energy per
Screw i-b=b (6.22) unit length
dislocation
1 shear modulus
Screw 2 R R outer cutoff for r
u .
. . U="1ln=— 6.23 ro  inner cutoff for r
dislocation 1o (6.23) N
energy per 5 L critical crack length
unit leneth? ~ ub (6.24) | 5 surface energy per unit
g area & .
" E Y dul - -
Critical crack 4o E onne MOTs
. L=—"—— (6.25) | ¢  Poisson ratio
length® n(1—o2)pd 1 wideni L
0 po  applied widening stress
“The Burgers vector is a Bravais lattice vector characterising the total relative slip
were the dislocation to travel throughout the crystal.
bOr “tension.” The energy per unit length of an edge dislocation is also ~ ub?.
“For a crack cavity (long L L) within an isotropic medium. Under uniform stress po,
cracks > L will grow and smaller cracks will shrink.
Crystal diffraction
a,b,c lattice parameters
a(COS&(l —COS 052) =hi (6.26) o1,f1,y1 angles between lattice base
Laue ' b(COSﬁ1 —COSﬂz) —kJ (6.27) vectors and input v%lavevector
equations o2,f2,72 angles between lattice base
c(cosy; —cosyy) =14 (6.28) vectors and output wavevector
h,k,l integers (Laue indices)
5 A wavelength
Bragg’s law? 2kin.G+1G|"=0 (6.29) kin input wavevector
G reciprocal lattice vector
. (G) atomic form factor
Atomic form _iGr !
factor flag)= € lG'p(r) d’r (6.30) | r position vector
vol p(r) atomic electron density
Structure n S(G) structure factor
factor? S(G)= ij(G)e_'G'dj (6.31) | n number of atoms in basis
j=1 d; position of jth atom within basis
K change in wavevector
Scattered 2 2 (=kou ki)
intensity" I(K) o N |S(K)| (6~32) I(K) scattered intensity
N number of lattice points
illuminated
It intensity at temperature T
Debye- 1 Iy intensity from a lattice with no
Waller I+ =Iyexp | —=(u? G 2 6.33 motion
T =1loeXp 3
factor? (u?) mean-squared thermal
displacement of atoms

¢Alternatively, see Equation (8.32).

bThe summation is over the atoms in the basis, i.e., the atomic motif repeating with the Bravais lattice.
“The Bragg condition makes K a reciprocal lattice vector, with |kin| = |kout|-

dEffect of thermal vibrations.
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