6.3 Crystalline structure

Bravais lattices

Volume of primitive cell	$V = (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}$	(6.1)	a,b,c V	primitive base vectors volume of primitive cell
	$a^* = 2\pi b \times c / [(a \times b) \cdot c]$	(6.2)		
Reciprocal	$\boldsymbol{b}^* = 2\pi \boldsymbol{c} \times \boldsymbol{a} / [(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}]$	(6.3)	a* b* a*	reciprocal primitive base
primitive base	$\boldsymbol{c}^* = 2\pi \boldsymbol{a} \times \boldsymbol{b} / [(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}]$	(6.4)	u ,v ,c	vectors
vectors ^a	$\boldsymbol{a} \cdot \boldsymbol{a}^* = \boldsymbol{b} \cdot \boldsymbol{b}^* = \boldsymbol{c} \cdot \boldsymbol{c}^* = 2\pi$	(6.5)		
	$\mathbf{a} \cdot \mathbf{b}^* = \mathbf{a} \cdot \mathbf{c}^* = 0$ (etc.)	(6.6)		
Lattice vector	$\boldsymbol{R}_{uvw} = u\boldsymbol{a} + v\boldsymbol{b} + w\boldsymbol{c}$	(6.7)	R_{uvw} u,v,w	lattice vector [uvw] integers
Reciprocal lattice	$G_{hkl} = ha^* + kb^* + lc^*$	(6.8)	G_{hkl}	reciprocal lattice vector [hkl]
vector	$\exp(\mathbf{i}\boldsymbol{G}_{hkl}\cdot\boldsymbol{R}_{uvw})=1$	(6.9)	i	$\mathbf{i}^2 = -1$
Weiss zone equation ^b	hu + kv + lw = 0	(6.10)	(hkl)	Miller indices of plane ^c
Interplanar spacing (general)	$d_{hkl} = \frac{2\pi}{G_{hkl}}$	(6.11)	d_{hkl}	distance between (hkl) planes
Interplanar spacing (orthogonal basis)	$\frac{1}{d_{hkl}^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$	(6.12)		

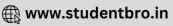
^aNote that this is 2π times the usual definition of a "reciprocal vector" (see page 20).

Weber symbols

Converting [uvw] to [UVTW]	$U = \frac{1}{3}(2u - v)$ $V = \frac{1}{3}(2v - u)$ $T = -\frac{1}{3}(u + v)$ $W = w$	(6.13) (6.14) (6.15) (6.16)	U,V,T,W u,v,w [UVTW] [uvw]	Weber indices zone axis indices Weber symbol zone axis symbol
Converting [UVTW] to [uvw]	u = (U - T) $v = (V - T)$ $w = W$	(6.17) (6.18) (6.19)		
Zone law ^a	hU + kV + iT + lW = 0	(6.20)	(hkil)	Miller-Bravais indices

^aFor trigonal and hexagonal systems.





^bCondition for lattice vector [uvw] to be parallel to lattice plane (hkl) in an arbitrary Bravais lattice. ^cMiller indices are defined so that G_{hkl} is the shortest reciprocal lattice vector normal to the (hkl) planes.

Cubic lattices

lattice	primitive (P)	body-centred (I)	face-centred (F)
lattice parameter	а	а	а
volume of conventional cell	a^3	a^3	a^3
lattice points per cell	1	2	4
1st nearest neighbours ^a	6	8	12
1st n.n. distance	а	$a\sqrt{3}/2$	$a/\sqrt{2}$
2nd nearest neighbours	12	6	6
2nd n.n. distance	$a\sqrt{2}$	а	а
packing fraction ^b	$\pi/6$	$\sqrt{3}\pi/8$	$\sqrt{2}\pi/6$
reciprocal lattice ^c	P	F	I
	$a_1 = a\hat{x}$	$a_1 = \frac{a}{2}(\hat{y} + \hat{z} - \hat{x})$	$\boldsymbol{a}_1 = \frac{a}{2}(\hat{\boldsymbol{y}} + \hat{\boldsymbol{z}})$
primitive base vectors ^d	$\mathbf{a}_2 = a\hat{\mathbf{y}}$	$\boldsymbol{a}_2 = \frac{a}{2}(\hat{\boldsymbol{z}} + \hat{\boldsymbol{x}} - \hat{\boldsymbol{y}})$	$a_2 = \frac{a}{2}(\hat{z} + \hat{x})$
	$a_3 = a\hat{z}$	$\boldsymbol{a}_3 = \frac{a}{2}(\hat{\boldsymbol{x}} + \hat{\boldsymbol{y}} - \hat{\boldsymbol{z}})$	$\boldsymbol{a}_3 = \frac{a}{2}(\hat{\boldsymbol{x}} + \hat{\boldsymbol{y}})$

^aOr "coordination number."

Crystal systems^a

system	symmetry	unit cell ^b	lattices ^c
triclinic	none	$a \neq b \neq c;$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	P
monoclinic	one diad [010]	$a \neq b \neq c;$ $\alpha = \gamma = 90^{\circ}, \ \beta \neq 90^{\circ}$	P, C
orthorhombic	three orthogonal diads	$a \neq b \neq c;$ $\alpha = \beta = \gamma = 90^{\circ}$	P, C, I, F
tetragonal	one tetrad [001]	$a = b \neq c;$ $\alpha = \beta = \gamma = 90^{\circ}$	P, I
trigonal ^d	one triad [111]	a = b = c; $\alpha = \beta = \gamma < 120^{\circ} \neq 90^{\circ}$	P, R
hexagonal	one hexad [001]	$a = b \neq c;$ $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$	P
cubic	four triads $\ \langle 111 \rangle$	a = b = c; $\alpha = \beta = \gamma = 90^{\circ}$	P, F, I

^aThe symbol "≠" implies that equality is not required by the symmetry, but neither is it forbidden.

^bFor close-packed spheres. The maximum possible packing fraction for spheres is $\sqrt{2}\pi/6$.

^cThe lattice parameters for the reciprocal lattices of P, I, and F are $2\pi/a$, $4\pi/a$, and $4\pi/a$ respectively.

 $^{{}^{}d}\hat{x}$, \hat{y} , and \hat{z} are unit vectors.

^bThe cell axes are a, b, and c with α , β , and γ the angles between b:c, c:a, and a:b respectively.

^cThe lattice types are primitive (P), body-centred (I), all face-centred (F), side-centred (C), and rhombohedral primitive (R).

^dA primitive hexagonal unit cell, with a triad || [001], is generally preferred over this rhombohedral unit cell.

Dislocations and cracks

					. /
Edge dislocation	$\hat{\boldsymbol{l}} \cdot \boldsymbol{b} = 0$	(6.21)	<i>ì b</i> , <i>b</i>	unit vector \parallel line of dislocation Burgers vector ^{a}	
Screw dislocation	$\hat{\boldsymbol{l}} \cdot \boldsymbol{b} = b$	(6.22)	U μ	dislocation energy per unit length shear modulus	
Screw dislocation energy per unit length ^b	$U = \frac{\mu b^2}{4\pi} \ln \frac{R}{r_0}$ $\sim \mu b^2$	(6.23) (6.24)	R r_0 L α	outer cutoff for r inner cutoff for r critical crack length surface energy per unit area	b#
Critical crack length ^c	$L = \frac{4\alpha E}{\pi (1 - \sigma^2) p_0^2}$	(6.25)	E σ p_0	Young modulus Poisson ratio applied widening stress	

^aThe Burgers vector is a Bravais lattice vector characterising the total relative slip were the dislocation to travel throughout the crystal.

Crystal diffraction

Laue equations	$a(\cos\alpha_1 - \cos\alpha_2) = h\lambda$ $b(\cos\beta_1 - \cos\beta_2) = k\lambda$ $c(\cos\gamma_1 - \cos\gamma_2) = l\lambda$	(6.26) (6.27) (6.28)	a,b,c $\alpha_1,\beta_1,\gamma_1$ $\alpha_2,\beta_2,\gamma_2$ h,k,l	lattice parameters angles between lattice base vectors and input wavevector angles between lattice base vectors and output wavevector integers (Laue indices)
Bragg's law ^a	$2\boldsymbol{k}_{\rm in}.\boldsymbol{G} + \boldsymbol{G} ^2 = 0$	(6.29)	$egin{array}{c} \lambda \ oldsymbol{k}_{ m in} \ oldsymbol{G} \end{array}$	wavelength input wavevector reciprocal lattice vector
Atomic form factor	$f(G) = \int_{\text{vol}} e^{-iG \cdot r} \rho(r) d^3 r$	(6.30)	$f(G)$ r $\rho(r)$	atomic form factor position vector atomic electron density
Structure factor ^b	$S(\mathbf{G}) = \sum_{j=1}^{n} f_j(\mathbf{G}) e^{-i\mathbf{G}\cdot\mathbf{d}_j}$	(6.31)	$S(G)$ n d_j	structure factor number of atoms in basis position of <i>j</i> th atom within basis
Scattered intensity ^c	$I(\mathbf{K}) \propto N^2 S(\mathbf{K}) ^2$	(6.32)	K I(K) N	change in wavevector $(=k_{\text{out}}-k_{\text{in}})$ scattered intensity number of lattice points illuminated
Debye– Waller factor ^d	$I_T = I_0 \exp\left[-\frac{1}{3}\langle u^2\rangle \boldsymbol{G} ^2\right]$	(6.33)	$\begin{vmatrix} I_T \\ I_0 \\ \langle u^2 \rangle \end{vmatrix}$	intensity at temperature T intensity from a lattice with no motion mean-squared thermal displacement of atoms

^aAlternatively, see Equation (8.32).

^bOr "tension." The energy per unit length of an edge dislocation is also $\sim \mu b^2$. ^cFor a crack cavity (long $\perp L$) within an isotropic medium. Under uniform stress p_0 , $\operatorname{cracks} \ge L$ will grow and smaller cracks will shrink.

^bThe summation is over the atoms in the basis, i.e., the atomic motif repeating with the Bravais lattice. ^cThe Bragg condition makes K a reciprocal lattice vector, with $|k_{\rm in}| = |k_{\rm out}|$.

^dEffect of thermal vibrations.